A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree
نویسندگان
چکیده
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.
منابع مشابه
Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method
Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...
متن کاملOverview on Vascular Tissue Engineering: Progress and Challenges
Today, vascular diseases such as atherosclerosis are one of the leading causes of death in the world and the prevalence of it in older societies is rising. The current treatments for repair of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or artificial devices, or the use of metabolic products. Although these methods are commonly used, they did not g...
متن کاملA Structural Model for Evaluation of the Structural Complexity Dimensions of Health and Treatment Network of Firuzabad, Fars Province, Iran, using Design Structure Matrix and Quality Function Deployment Techniques
Summery: One of the latest methods for analysis of structural complexity is, Design Structure Matrix which has been used and has been given, lots of attention in academic and scientific centers in recent years. This project was undertaken in order to reveal the structural complexity of Frirooz Abad (Fars Province) Healthcare network. This analytical research has descriptive and realistic dime...
متن کاملDesign and Analysis of a Novel Tendon-less Backbone Robot
A new type of backbone robot is presented in this paper. The core idea is to use a cross shape mechanism with the principle of functioning of the scissors linkages, known as a pantograph. Although this continuum arm acts quite similar to tendon-driven robot, this manipulator does not include any tendon in its structure. This design does not suffer from the weaknesses of the continuum design suc...
متن کاملOptimum Design of FGX-CNT-Reinforced Reddy Pipes Conveying Fluid Subjected to Moving Load
The harmony search algorithm is applied to the optimum designs of functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying fluid which are subjected to a moving load. The structure is modeled by the Reddy cylindrical shell theory, and the motion equations are derived by Hamilton's principle. The dynamic displacement of the system is derived based on the differential quadratur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013